$$
\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{3}\left(\mathrm{ClO}_{4}\right)\right]\left(\mathrm{ClO}_{4}\right)
$$

$1140,1110,1090 v s ; 1035,1020 m ; 960,955,950 m ;$ $885 \mathrm{~m}, 860 \mathrm{~s}, 755 \mathrm{vs} ; 635,625 m ; 410,400 \mathrm{~m}$; $275 w$. Among these the band at $860 \mathrm{~cm}^{-1}$ seems to be specially characteristic of the complex; this is absent from the spectrum of quinoxaline. The $275 \mathrm{~cm}^{-1}$ band we assign to $\nu(\mathrm{Cu}-\mathrm{N})$ stretching vibrations.

The IR spectrum of the complex shows the strong band found at $953 \mathrm{~cm}^{-1}$ in the quinoxaline spectrum (Billing, 1969), obviously in the region $1000-900 \mathrm{~cm}^{-1}$, split into a triplet at $960-950 \mathrm{~cm}^{-1}$ and pointing to quinoxaline coordination. A complex studied earlier, triaquabis(quinoxaline)copper(II) perchlorate, with terminal quinoxaline ligands, has a medium peak at $940 \mathrm{~cm}^{-1}$ in its IR spectrum (Lumme et al., 1987). The responsibility of this band for the coordination of pyrazine to the central atom has earlier been assumed (Lever, Lewis \& Nyholm, 1962). The present complex also shows three intense bands of the bridging bidentate perchlorate in the range $1150-1050 \mathrm{~cm}^{-1}(1140,1110$ and $\left.1090 \mathrm{~cm}^{-1}\right)$ owing to $v(\mathrm{Cl}-\mathrm{O})$ stretching vibrations.

References

Billing, D. E. (1969). J. Inorg. Nucl. Chem. 31, 137-143.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.

Darriet, J., Haddad, M. S., Duesler, E. N. \& Hendrickson, D. N. (1979). Inorg. Chem. 18, 2679-2682.

Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Lever, A. B. P., Lewis, J. \& Nyholm, R. S. (1962). J. Chem. Soc. pp. 1235-1246.
Lipkowski, J., Andreetti, G. D. \& Sgarabotto, P. (1977). Cryst. Struct. Commun. 6, 197-200.
Lumme, P., Lindroos, S. \& Lindell, E. (1987). Inorg. Chim. Acta. In the press.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Morosin, B., Hughes, R. C. \& Soos, Z. G. (1975). Acta Cryst. B31, 762-770.
Richardson, H. W., Hatfield, W. E., Stoklosa, H. J. \& Wasson, J. R. (1973). Inorg. Chem. 12, 2051-2053.
Stewart, J. M., Machin, P. A., Dickinson, C. W., Ammon, H. L., Heck, H. \& Flack, H. (1976). The XRA Y76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland, USA.
Taylor, R. \& Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.
Truter, M. R. \& Vickerey, B. L. (1973). J. Appl. Cryst. 6, 323. Program No. 124.

Structure of $\left\{4,4^{\prime}\right.$-[Iminobis(1,3-propanediylnitrilo)]-di-2-pentanonato- $\left.N, N^{\prime}, N^{\prime \prime}, O, O^{\prime}\right\}$ copper

By Roy G. Garvey, Robert D. Koob and Melvin L. Morris
Department of Chemistry, North Dakota State University, Fargo, ND 58105-5516, USA

(Received 10 March 1987; accepted 8 June 1987)

Abstract

Cu}\left(\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2}\right)\right], \quad M_{r}=356.95\), monoclinic, $\quad C 2 / c, \quad a=22.234$ (5), $\quad b=11.753$ (5),$\quad c=$ 19.005 (4) $\AA, \beta=135.57$ (2) ${ }^{\circ}, V=3476.8 \AA^{3}, Z=8$, $D_{x}=1.364 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71073 \AA, \quad \mu=$ $12.7 \mathrm{~cm}^{-1}, F(000)=1512, T=168 \mathrm{~K}$, final $R=0.036$ for 2813 unique observed reflections. The copper coordination is fivefold, approximately trigonal bipyramidal. Imine nitrogens occupy trans apical positions ($1.96 \AA, 175^{\circ}$). Two oxygens ($1.98 \AA, 142^{\circ}$) and the secondary nitrogen of the pentadentate ligand ($2.29 \AA, 103^{\circ}$) occupy the trigonal equatorial sites.

Introduction. Since initial isolation, neutral five-coordinate $\mathrm{Cu}^{\text {II }}$ complexes containing doubly condensed pentadentate Schiff bases have been described as most probably possessing distorted square-pyramidal

0108-2701/87/112056-03\$01.50
structure (Cummings \& Wallis, 1974; Cummings, Chen, Chu, McKinney \& Willis, 1981; Cummings, Braydich \& Fortman, 1983). The structure of the title compound demonstrates that in the solid state the molecule is more appropriately described as trigonal bipyramidal with a nearly perfect twofold axis along the copper-secondary-amine vector.

Experimental. Green crystals were obtained following method B of Cummings et al. (1981). Nearly cubeshaped specimen, dimensions $0.30 \times 0.30 \times 0.40 \mathrm{~mm}$. Enraf-Nonius CAD-4 diffractometer with graphite crystal monochromator using $\omega-2 \theta, 2 \theta<55^{\circ}$, scan speed varying from 2 to $20^{\circ} \mathrm{min}^{-1}$ (in 2θ). Lattice parameters from 25 reflections in θ range of $7-11^{\circ}$. Empirical absorption corrections (Walker \& Stuart,
© 1987 International Union of Crystallography

Table 1. Atomic positions and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$ with e.s.d.'s in parentheses

$B_{\text {eq }}=\frac{4}{3}$	$\begin{aligned} \beta_{11}+b^{2} B_{22}+ & c^{2} B_{33}+b c(\cos \alpha) B_{23}+a c(\cos \beta) B_{13} \\ & \left.a b(\cos \gamma) B_{12}\right] . \end{aligned}$			
	x	y	z	$B_{\text {eq }}$
Cu	0.76143 (1)	$0 \cdot 11077$ (3)	0.74667 (2)	$2 \cdot 260$ (7)
$\mathrm{O}(1)$	0.65812 (9)	$0 \cdot 1271$ (2)	0.6007 (1)	$2 \cdot 63$ (4)
$\mathrm{O}(2)$	0.85132 (9)	$0 \cdot 2024$ (2)	0.8705 (1)	$3 \cdot 12$ (5)
$\mathrm{N}(2)$	0.8360 (1)	0.868 (2)	0.7275 (1)	2.61 (5)
$\mathrm{N}(3)$	0.6868 (1)	0.1196 (2)	0.7670 (1)	2.40 (5)
N(4)	0.7932 (1)	-0.0708 (2)	$0 \cdot 8084$ (1)	2.46 (5)
C(1)	0.5714 (2)	$0 \cdot 1552$ (3)	0.4288 (2)	3.51 (8)
C(2)	0.6573 (1)	$0 \cdot 1300$ (2)	0.5325 (2)	2.57 (6)
C(3)	0.7271 (1)	$0 \cdot 1106$ (3)	0.5483 (2)	$3 \cdot 30$ (7)
C(4)	0.8122 (1)	0.0867 (3)	0.6419 (2)	$3 \cdot 32$ (7)
C(5)	0.8751 (2)	0.0591 (5)	$0 \cdot 6365$ (2)	$5 \cdot 8$ (1)
C(6)	0.9237 (1)	0.0536 (3)	0.8204 (2)	2.97 (7)
C(7)	0.9275 (1)	-0.0686 (3)	0.8490 (2)	3.33 (7)
C(8)	0.8868 (1)	-0.0907 (3)	$0 \cdot 8858$ (2)	3.02 (7)
C(11)	0.9124 (1)	0.3396 (3)	0.9968 (2)	3.41 (7)
C(12)	0.8387 (1)	0.2632 (2)	0.9153 (1)	2.63 (6)
C(13)	0.7657 (1)	0.2619 (3)	$0 \cdot 8946$ (1)	2.91 (6)
C(14)	$0 \cdot 6956$ (1)	$0 \cdot 1857$ (3)	0.8292 (1)	2.72 (6)
C(15)	0.6317 (1)	$0 \cdot 1820$ (3)	0.8355 (2)	3.80 (7)
C(16)	0.6235 (1)	0.0279 (3)	0.7136 (2)	2.88 (6)
C(17)	0.6612 (1)	-0.0837 (3)	0.7726 (2)	3.04 (6)
C(18)	0.7587 (1)	-0.0906 (2)	$0 \cdot 8506$ (2)	2.94 (7)

1983). Data collected by Molecular Structure Corporation using I-centered cell $(a=15.877$, $\left.b=11.753, \quad c=19.005 \AA, \quad \beta=101.36^{\circ}\right) \quad$ and reindexed to C-centered cell. $h=-23$ to $28, k=-15$ to $0, l=-24$ to 24 . Three representative reflections measured every $41 \mathrm{~min},-1 \cdot 3 \%$ loss in intensity over 29.7 h collection time, 4321 unique reflections; 2813 with $I>3 \sigma(I)$, 948 with $I<\sigma(I)$. Structure solved by combination of direct methods and difference Fourier synthesis. Some H atoms found in difference maps, others placed at calculated positions. Refinement by full-matrix least squares, minimizing $w \Delta F^{2}, w^{-1}=$ $\sigma^{2}\left(F_{o}\right)$, of 308 parameters including scale factor, secondary-extinction coefficient, position, anisotropic displacement for non-H atoms, and isotropic displacement for H atoms. Final $R=0.036, w R=0.048$, $S=1 \cdot 37$. Ratio of greatest parameter shift to e.s.d. in final cycle 0.28 for H and 0.14 for non- H with the majority of parameters <0.05. Density in final difference Fourier synthesis did not exceed $0.27 \mathrm{e} \AA^{-3}$. Secondary-extinction coefficient 5.38×10^{-7}. Atom scattering factors ($f, f^{\prime}, f^{\prime \prime}$) from International Tables for X-ray Crystallography (1974). Computer programs described by Frenz (1983). The structure is defined in Tables 1 and 2 and Fig. 2.* There appear to be no intermolecular interactions stronger than van der Waals.

[^0]Discussion. Addison, Rao, Reedijk, van Rijn \& Verschoor (1984) have described the 'trigonality' of five-coordinate geometries using the angular parameter
$\tau=$ (largest $L-M-L^{\prime}$ angle - next largest $L^{\prime \prime}-M-L^{\prime \prime \prime}$ angle) $/ 60$. $L, L^{\prime}, L^{\prime \prime}, L^{\prime \prime \prime}$ represent ligand electron-pair donor atoms chosen pairwise to form angle arms with the central atom $M . \tau=1$ represents the ideal trigonalbipyramidal geometry, $\tau=0$ the ideal square-pyramidal geometry. For the title compound $\tau=0.55$.

Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

		$\mathrm{Cu}-\mathrm{N}(4) \quad 2$	$2 \cdot 292$ (2)
$\mathrm{Cu}-\mathrm{O}(1)$	1.976 (2)	$\mathrm{Cu}-\mathrm{N}(2) \quad 1$	1.956 (2)
$\mathrm{Cu}-\mathrm{O}(2)$	1.994 (2)	$\mathrm{Cu}-\mathrm{N}(3) \quad 1$	1.955 (2)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.498 (4)	$\mathrm{C}(11)-\mathrm{C}(12) \quad 1$	1.505 (4)
$\mathrm{C}(2)-\mathrm{O}(1)$	1.286 (3)	$\mathrm{C}(12)-\mathrm{O}(2) \quad 1$	1.286 (3)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.372 (4)	$\mathrm{C}(12)-\mathrm{C}(13) \quad 1$	$1 \cdot 371$ (4)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.420 (4)	$\mathrm{C}(13)-\mathrm{C}(14) \quad 1$	1.418 (4)
$\mathrm{C}(4)-\mathrm{N}(2)$	$1 \cdot 303$ (3)	$\mathrm{C}(14)-\mathrm{N}(3) \quad 1$	$1 \cdot 308$ (3)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.507 (4)	$\mathrm{C}(14)-\mathrm{C}(15) \quad 1$	1.509 (4)
$\mathrm{C}(6)-\mathrm{N}(2)$	1.468 (3)	$\mathrm{C}(16)-\mathrm{N}(3) \quad 1$	1.461 (3)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.516 (4)	$\mathrm{C}(16)-\mathrm{C}(17) \quad 1$	1.529 (4)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.509 (4)	$\mathrm{C}(17)-\mathrm{C}(18) \quad 1$	1.523 (4)
$\mathrm{C}(8)-\mathrm{N}(4)$	1.478 (3)	$\mathrm{C}(18)-\mathrm{N}(4) \quad 1$	1.471 (3)
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(2)$	141.72 (7)	$\mathrm{Cu}-\mathrm{O}(2)-\mathrm{C}(12)$	124.9 (2)
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{N}(2)$	92.48 (8)	$\mathrm{N}(3)-\mathrm{C}(14)-\mathrm{C}(13)$	122.0 (2)
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{N}(3)$	88.41 (8)	$\mathrm{N}(3)-\mathrm{C}(14)-\mathrm{C}(15)$	121.0 (3)
$\mathrm{Cu}-\mathrm{N}(2)-\mathrm{C}(4)$	$126 \cdot 2$ (2)	$\mathrm{N}(3)-\mathrm{C}(16)-\mathrm{C}(17)$	118.8 (2)
$\mathrm{Cu}-\mathrm{N}(2)-\mathrm{C}(6)$	112.9 (2)	$\mathrm{O}(2)-\mathrm{C}(12)-\mathrm{C}(11)$	114.9 (2)
$\mathrm{Cu}-\mathrm{O}(1)-\mathrm{C}(2)$	125.7 (2)	$\mathrm{O}(2)-\mathrm{C}(12)-\mathrm{C}(13)$	125.3 (2)
$\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	$123 \cdot 6$ (3)	$\mathrm{C}(14)-\mathrm{N}(3)-\mathrm{C}(16)$	120.9 (2)
$\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	121.1 (3)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$) 119.8 (3)
$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	111.6 (2)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$) 126.3 (3)
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	114.7 (3)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$) $117.0(3)$
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$125 \cdot 1$ (2)	$\mathrm{O}(2)-\mathrm{Cu}-\mathrm{N}(4)$	102.55 (8)
$\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(6)$	120.5 (2)	$\mathrm{N}(2)-\mathrm{Cu}-\mathrm{N}(4)$	88.17 (8)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	120.2 (3)	$\mathrm{N}(3)-\mathrm{Cu}-\mathrm{N}(4)$	86.74 (8)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$126 \cdot 5$ (3)	$\mathrm{Cu}-\mathrm{N}(4)-\mathrm{C}(8)$	$110 \cdot 8(2)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	115.3 (3)	$\mathrm{Cu}-\mathrm{N}(4)-\mathrm{C}(18)$	109.6 (2)
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{N}(4)$	115.60 (7)	$\mathrm{N}(4)-\mathrm{C}(8)-\mathrm{C}(7)$	113.3 (2)
$\mathrm{O}(2)-\mathrm{Cu}-\mathrm{N}(2)$	91.68 (8)	$\mathrm{N}(4)-\mathrm{C}(18)-\mathrm{C}(17)$	113.3 (2)
$\mathrm{O}(2)-\mathrm{Cu}-\mathrm{N}(3)$	90.85 (8)	$\mathrm{C}(8)-\mathrm{N}(4)-\mathrm{C}(18)$	110.1 (2)
$\mathrm{N}(2)-\mathrm{Cu}-\mathrm{N}(3)$	174.71 (9)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	115.5 (2)
$\mathrm{Cu}-\mathrm{N}(3)-\mathrm{C}(14)$	127.6 (2)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$) 114.3 (2)
$\mathrm{Cu}-\mathrm{N}(3)-\mathrm{C}(16)$	$110 \cdot 9$ (2)		

Fig. 1. Molecular conformation of the title compound showing atom identification. Displacement ellipsoids drawn at 50% probability.

Characterization of the coordinated ligand moiety as 'en- \cdots ate' is supported by comparison of the C(2)$\mathrm{C}(3), \mathrm{C}(12)-\mathrm{C}(13)$ distances with those of $\mathrm{C}(3)-\mathrm{C}(4)$, $\mathrm{C}(13)-\mathrm{C}(14)$. However both $\mathrm{C}-\mathrm{O}$ distances are decidedly carbonyl. $\mathrm{C}(4)-\mathrm{N}(2)$ and $\mathrm{C}(14)-\mathrm{N}(3)$ appear to be imine bonds relative to the amine bonds of $\mathrm{C}(6)-\mathrm{N}(2)$ and $\mathrm{C}(8)-\mathrm{N}(4)$ or $\mathrm{C}(16)-\mathrm{N}(3)$ and $\mathrm{C}(18)-\mathrm{N}(4)$. The nearly perfect twofold axis down the $\mathrm{N}(4)-\mathrm{Cu}$ vector is noteworthy.

Financial support by the National Science Foundation through Grant CHE-8311371 for assistance in acquisition of the TEXRAY 230 system is gratefully acknowledged.

References

Addison, A. W., Rao, T. N., Reedij, J., van Rijn, J. \& Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.
Cummings, S. C., Braydich, M. D. \& Fortman, J. J. (1983). Inorg. Chem. 22, 484-490.
Cummings, S. C., Chen, Y. Y., Chu, D. E., McKinney, B. D. \& Willis, L. F. (1981). Inorg. Chem. 20, 1885-1892, 3582.
Cummings, S. C. \& Wallis, W. N. (1974). Inorg. Chem. 13, 988-991.
Frenz, B. A. (1983). Enraf-Nonius Structure Determination Package. College Station, Texas, USA, and Enraf-Nonius, Delft, The Netherlands.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 159-166.

Acta Cryst. (1987). C43, 2058-2060

Structure of Tricarbonyl(η^{4}-syn-1,4-diacetoxy-1,3-butadiene)iron(0)*

By M. Soriano-García, \dagger C. Alvarez and R. A. Toscano
Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510, Mexico DF
and A. C. Cano
Facultad de Estudios Superiores, Cuautitlán, Sección de Quimica Orgánica, Campo 1, Cuautitlán Izcalli, Mexico

(Received 2 January 1987; accepted 8 June 1987)

Abstract

Fe}(\mathrm{CO})_{3}\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{4}\right)\right], \quad M_{r}=310 \cdot 0\), monoclinic, $P 2_{1} / n, \quad a=11.093$ (4),$\quad b=10.680$ (3),$\quad c=$ 11.763 (5) $\AA, \beta=101.45$ (3) ${ }^{\circ}, V=1366$ (1) $\AA^{3}, Z=$ 4, $D_{x}=1.51 \mathrm{Mg} \mathrm{m}^{-3}$, Мо $K \alpha, \quad \lambda=0.7107 \AA, \quad \mu=$ $1 \cdot 124 \mathrm{~mm}^{-1}, F(000)=632, T=293 \mathrm{~K}, R=0.046$ for 1888 observed reflections. The molecular structure is determined from the X-ray data and confirms the structure previously assigned on the basis of IR and NMR spectra. The $\mathrm{Fe}(\mathrm{CO})_{3}$ group is symmetrically bonded to the butadiene moiety formed by $\mathrm{C}(4)$ to $\mathrm{C}(7)$ of the ligand. Both ester groups at $C(4)$ and $C(7)$ are planar and cis to each other about the central $\mathrm{C}(5)-\mathrm{C}(6)$ bond. The structure consists of discrete molecules held in the crystal by van der Waals forces.

Introduction. As part of our investigations of complexes between $\mathrm{Fe}(\mathrm{CO})_{3}$ and vinyl ester ligands, the title compound (1) was synthesized. Several complexes between $\mathrm{Fe}(\mathrm{CO})_{3}$ and the vinyl ligand with various substituents including phenyl, ester and acyl groups

[^1]0108-2701/87/112058-03\$01.50
have been prepared in order to study their molecular conformation and chemical reactivity. The structure determination was undertaken to elucidate the stereochemistry of (1).

(1)

Experimental. The title compound (1) was obtained from the reaction of trans,trans-1,4-diacetoxybutadiene $(1.7 \mathrm{~g}, 10 \mathrm{mmol})$ (prepared as described by Hill \& Carlson, 1964) and $\mathrm{Fe}(\mathrm{CO})_{5}(9.7 \mathrm{~g}, 50 \mathrm{mmol})$ which was irradiated with an ultraviolet lamp of 200 W at room temperature. The product is purified by chromatographic methods and recrystallized from ethyl acetate to give yellow air-stable crystals with a composition of $\mathrm{Fe}\left(\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{7}\right)$.
© 1987 International Union of Crystallography

[^0]: * Lists of H -atom parameters, structure factors and anisotropic displacement parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44122 (6 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * Contribution No. 855 of the Instituto de Quimica, UNAM.
 \dagger To whom correspondence should be addressed.

